19. Models For Field Agriculture

For ending hunger, field agriculture must not be neglected — regarding which there are two vastly different models.  The pluses and minuses of each must be considered.

In the developed world/ global north, the Enlightenment’s scientific method and the Industrial Revolution combined to produce a form of agriculture that relies on machinery for plowing, sowing, reaping, and irrigation, on manufactured fertilizers and hybrid seeds, and since about 1950 on chemical pesticides and herbicides.  The push for genetically modified seeds and the use of such innovations as self-driving tractors, condition-monitoring drones, and smartphone-c0ntrolled irrigation are all just logical next steps for this model.  These techniques were adopted enthusiastically in the global north not least because they were a very good fit with the economic philosophies of capitalism and mercantilism  that dominate these geographical areas.  And without question, industrial agriculture has vastly increased yields (at least in the short term).  Indeed, the shunting of much of U.S. corn production to ethanol and high fructose corn syrup arose when U.S. corn harvests at one point in time were too great to profitably sell for food.

So industrial agriculture’s big plus is its high yields — and that is not negligible.  Nonetheless, it also has a few big problems.  The high cost of the machinery, hybrid seeds, and chemicals is one.  Another is the way the chemicals pollute water, which kills fish and frogs and creates ocean dead zones, while they also kill pollinators and beneficial insects and the birds that depend on the insects:  the threat of mass extinction in the biosphere we ultimately depend on is also not negligible on general principles, besides that destroying pollinators will surely decrease food production.  Industrial agriculture is also highly erosive, further undermining its sustainability.  And in many areas it is dependent on unsustainable levels of irrigation, drawing on groundwater and surface water faster than it can be replenished.  The huge wheat harvests on North America’s High Plains, for example, depend on persistent overuse of the Oglalla Aquifer, which keeps drawing it down further — and once it’s gone, there won’t be any wheat harvests there.  California, Russia’s Aral Sea, and India’s Punjab region are a few other places where this last phenomenon is occurring.

The Punjab situation brings up yet another problem with industrial agriculture:  it has not transferred  well to the global south.  We know this because that transfer is exactly what the Green Revolution tried to do, and while the Green Revolution boosted yields wildly in the beginning, it then foundered badly.  Free seeds and fertilizer were offered for the first few years to get developing world farmers started, but once these incentives were withdrawn most peasants farmers could not afford expensive hybrid seeds and chemicals, yet they had by then lost their locally-adapted heirloom seed varieties and been taught to plant pest-attracting monocultures.  The hybrid seeds did not perform well without the chemicals and irrigation that were simply unaffordable to many in the developing world, leaving them mired in debt and with farms that were often less productive than before the Green Revolution started.  Nor had the temporarily increased yields actually relieved hunger, since the population had grown in lockstep with the temporarily higher harvests.  The promise of industrial agriculture’s Green Revolution has thus fizzled thoroughly in the global south.

Industrial agriculture’s unsustainability  in the north and inapplicability to the south make it worth looking at the other agricultural model, which has come to be called agroecology.  First, it is important to state that agroecology is not a step backward to preindustrial subsistence.  What it does do is look at the productivity, stability, sustainability, and equitability of an agricultural system, considering these four properties as interconnected and all integral to each other and to a successful form of agriculture.  Agroecology is not averse to technology;  for example, I read this week of an initiative to bring drip irrigation to peasant farmers in Guatemala’s highlands who are suffering from a climate-change-induced decrease in rainfall.  But it does use technology selectively and includes organic practices.  It seeks to work in harmony with each ecosystem, and to grow food in ways that are both ecologically sustainable and enable locally indigenous people to hold and farm their traditional lands by combining useful modern technologies with the sophisticated practices that their ancestors had developed over centuries to grow enough food in accord with each area’s own climate and soil and biotic community.  Agroecology thus supports food sovereignty and justice as well as food production.  Its apparent drawback is that it does not get nearly as high a yield per acre of any particular crop as industrial agriculture does.  But it is crucial to note that because it uses companion planting and succession cropping, it often gets more tons of food per acre than industrial agriculture’s mono-crops.   And it does so in ways that conserve and enhance the soil, sequester huge amounts of carbon, preserve local cultures and communities, and can continue to do so indefinitely.

Agroecology is especially well suited to the global south where the capital needed for industrial agriculture is hard to come by.  But it is just as useful in the global north, where small farmers use organic and biodynamic and IPM practices and raise livestock on pasture and sell through farmers’ markets and community supported agriculture  and local co-ops and local restaurants.

Industrial agriculture’s high yields can be useful in solving the problem of world hunger, especially if they can be turned from growing commodities and livestock feed to growing food directly for people.  There is even such a thing as “industrial organic” production.  But for producing good food that people can grow themselves or otherwise access and afford, in ways that mitigate climate change and preserve pollinators and the rest of the biosphere, agroecology needs to become a whole lot more dominant — everywhere.

Louise “Gentle Bee” Quigley


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s